Lifetime of Ionic Vacancy Created in Redox Electrode Reaction Measured by Cyclotron MHD Electrode

نویسندگان

  • Atsushi Sugiyama
  • Ryoichi Morimoto
  • Tetsuya Osaka
  • Iwao Mogi
  • Miki Asanuma
  • Makoto Miura
  • Yoshinobu Oshikiri
  • Yusuke Yamauchi
  • Ryoichi Aogaki
چکیده

The lifetimes of ionic vacancies created in ferricyanide-ferrocyanide redox reaction have been first measured by means of cyclotron magnetohydrodynamic electrode, which is composed of coaxial cylinders partly exposed as electrodes and placed vertically in an electrolytic solution under a vertical magnetic field, so that induced Lorentz force makes ionic vacancies circulate together with the solution along the circumferences. At low magnetic fields, due to low velocities, ionic vacancies once created become extinct on the way of returning, whereas at high magnetic fields, in enhanced velocities, they can come back to their initial birthplaces. Detecting the difference between these two states, we can measure the lifetime of ionic vacancy. As a result, the lifetimes of ionic vacancies created in the oxidation and reduction are the same, and the intrinsic lifetime is 1.25 s, and the formation time of nanobubble from the collision of ionic vacancies is 6.5 ms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Magneto-Dendrite Effect: Copper Electrodeposition under High Magnetic Field

Ionic vacancy is a by-product in electrochemical reaction, composed of polarized free space of the order of 0.1 nm with a 1 s lifetime, and playing key roles in nano-electrochemical processes. However, its chemical nature has not yet been clarified. In copper electrodeposition under a high magnetic field of 15 T, using a new electrode system called cyclotron magnetohydrodynamic (MHD) electrode ...

متن کامل

Covalent Modification of Glassy Carbon Electrode with an Imidazolium based Methoxysilyl Ionic Liquid Nanoparticles: Application in Determination of Redox System

Glassy carbon (GC) is the most commonly used carbon-based electrode in the analytical laboratory. Because of the high background current and low electrode response, modification of this electrode can be done by various materials and techniques. An ionic liquid (IL), 1-methyl-3-(3-trimethoxysilyl propyl) imidazoliumbis (trifluoromethylsulfonyl) imide, was covalently cross linked onto the GC surf...

متن کامل

Origin of Nanobubbles Electrochemically Formed in a Magnetic Field: Ionic Vacancy Production in Electrode Reaction

As a process complementing conventional electrode reactions, ionic vacancy production in electrode reaction was theoretically examined; whether reaction is anodic or cathodic, based on the momentum conservation by Newton's second law of motion, electron transfer necessarily leads to the emission of original embryo vacancies, and dielectric polarization endows to them the same electric charge as...

متن کامل

Uultra-trace determination of cadmium (II) in aqueous environmental samples by a new ion selective electrode based on nefazodone and 1-butyl-3-methylimidazolium hexafluorophosphate ionic liquid

Background and Objective: Cadmium is a potential environmental contaminant that causes adverse effects on the environment and the health of living organisms. Therefore, designing a simple and economic technique for its determination is very important. In this respect, a potentiometric sensor based on nefazodone as the ionophore and [BMIM]PF6 as the ionic additive were developed for the determin...

متن کامل

Computational and electrochemical studies on the redox reaction of 2-(2,3-dihydroxy phenyl)-1,3- dithiane in aqueous solution

Electrode potential of 2-(2,3-dihydroxy phenyl)-1,3-dithiane (DPD) was investigated by means of cyclic voltammetry (CV) at various potential scan rates. The calculated value was compared with the experimental value obtained by cyclic voltammetry (CV). All experiments were done in aqueous phosphate buffer solutions at different pHs. The experimental redox potential of DPD was obtained to be 0.75...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016